Refactorings for Fortran and High-Performance Computing

Jeffrey Overbey, Spiros Xanthos, Ralph Johnson and Brian Foote
University of lllinois at Urbana-Champaign
MC 258
201 North Goodwin
Urbana, IL 61801

{overbey2,xanthos2,johnson,foote}@cs.uiuc.edu

ABSTRACT

Not since the advent of the integrated development environ-
ment has a development tool had the impact on programmer
productivity that refactoring tools have had for object-
oriented developers. However, at the present time, such
tools do not exist for high-performance languages such as
C and Fortran; moreover, refactorings specific to high-
performance and parallel computing have not yet been
adequately examined. We observe that many common
refactorings for object-oriented systems have clear analogs
in procedural Fortran. The Fortran language itself and the
introduction of object orientation in Fortran 2003 give rise
to several additional refactorings. Moreover, we conjecture
that many hand optimizations common in supercomputer
programming can be automated by a refactoring engine
but deferred until build time in order to preserve the
maintainability of the original code base. Finally, we
introduce Photran, an integrated development environment
that will be used to implement these transformations,
and discuss the impact of such a tool on legacy code
reengineering.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—program editors; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement—restructur-
mng

General Terms

Design, Languages.

Keywords

Refactoring. Fortran programming.

Permission to make digital or hard copies of all or part of this work for

1. THE NEED FOR REFACTORING

The quality of any long-lived code base tends to degrade
over time. Otherwise stable architectures tend to take
on a certain malleable quality as programmers attempt
to adapt systems to meet unforeseen new requirements.
Moreover, many coding best practices—e.g., small methods
and concise, descriptive names—fall to the wayside when
deadlines and functionality are in jeopardy. Although these
issues are negligible in isolation, their cumulative action
is often an erosion of the system’s architecture [2]. Such
systems tend to have high entropy, exhibit code duplication
and global information sharing [5]. Maintenance and
expansion can become tedious, costly, and time-consuming
work [1].

One solution to this gradual software decay is refactoring
[6, 10]. Refactorings are source-level program transforma-
tions that preserve the observable behavior of a system while
improving its source code. Often, refactorings aim to elim-
inate code duplication or poor design decisions. Common
refactorings include renaming variables or functions to be
more descriptive, breaking a large subroutine into several
smaller ones, or substituting one algorithm for another.
In object-oriented systems, common refactorings include
replacing case statements with polymorphism, introducting
Method Objects, and moving methods between classes.
Martin Fowler’s Refactoring: Improving the Design of Exist-
ing Code [6] gives a more extensive catalog of refactorings.

One particularly interesting quality of refactorings is
that many of them are algorithmic in nature. In essence,
renaming a function amounts to a textual change of its
declaration and of all invocations. While this is certainly
not an easy task (due to complications such as preprocessing
and function overloading), it can, in fact, be automated.

The Eclipse Java Development Tool [9] has arguably
brought automated refactorings to the widest audience,
although it was not the first tool to implement them. Much
of the initial work in automated refactorings was done
by Ralph Johnson’s research group at the University of
Nlinois. William Opdyke’s Ph.D. thesis [10] is often cited
as the pioneering work in this area. John Brant and Don
Roberts’ Smalltalk Refactoring Browser [12] was the first
implementation, introducing automated refactorings to the
Smalltalk community. It has since been integrated into

personal or classroom use is granted without fee provided that copies arey/isyalWorks Smalltalk. More recently, Alejandra Garrido

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ICSE’'05,May 15-21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-117-1/05/00055.00.

has been working with preprocessing issues in C refactoring
[7], [8], and Photran will introduce refactorings specific to
Fortran and high-performance computing.



2. REFACTORING FORTRAN

The classical use of refactoring as a form of retroactive
engineering is particularly applicable to Fortran. The
amount of Fortran 77 code that remains in production is
a clear indication that software maintenance issues apply
equally to HPC. However, there are many refactorings that
are specific to the Fortran language.

In her M.S. thesis [4], Vaishali De identifies many possible
Fortran refactorings. Many of the standard refactorings
for fields and methods (described in [6]) apply equally to
variables and subroutines in Fortran. Extract Method (i.e.,
removing a section of code into its own subroutine), Decom-
pose Conditional (replacing a complex boolean expression
with a more descriptive function call), Rename Variable, and
Reorder Procedure Arguments are several examples. Some
refactorings typically applied to classes in an object-oriented
system can be applied equally well to Fortran modules—e.g.,
Encapsulate Field (where accesses of and assignments to a
variable are replaced with function calls) and Move Method
(moving a subroutine between modules).

Fortran also brings several unique refactorings. One
example is transforming code from fixed format to free
format. This is just one part of migrating code from Fortran
77 to Fortran 90/95. Another example would be migrating
parallel arrays to derived types.

Similarly, once Fortran 2003 compilers materialize, ex-
isting Fortran programs will need to be migrated to that
as well. One aspect of this will be especially challenging:
Fortran 2003 introduces object orientation to the language.
The process of transforming a procedural code base into
an object-oriented one is certainly not one that can be
automated completely: A great deal of domain knowledge
and a number of design decisions must be made in the
process. However, we anticipate that many of the steps
can be automated, such as migrating module procedures to
type-bound procedures.

3. REFACTORINGS FOR HIGH-
PERFORMANCE COMPUTING

In the high performance world a very important issue for
the software is the optimization for certain architectures.
Many of the refactorings described previously can be applied
to a large number of programs. However, there is an entirely
different class of refactorings that are unique to the domain
of supercomputing: namely, performance refactorings.

It is well-known that, despite the best efforts of compiler
vendors, code intended to run on a specific supercomputer
must undergo many hand optimizations. Examples include
manual unrolling of loops and optimizing data structures
based on the machine’s cache size. Applying these tweaks
by hand is a tedious error-prone process. So, a tool that
would be able to automate the process of applying these
tweaks would be very useful.

However, while refactorings are typically used to improve
the design and readability of code, many of these perfor-
mance optimizations actually decrease readability. Loop
unrolling is an excellent example: An unrolled loop is far
more difficult to comprehend than one that has not been
unrolled.

In these cases, rather than transforming the code in-place,
we propose the notion of deferred transformations.! In

'We use the term “transformations” rather than “refactor-

the same way that a breakpoint can be set on a specific
line, programmers could tag a section of code to indicate
that a given transformation (e.g., “unroll this loop five
times”) should be applied immediately before the code
is compiled. This would allow programmers to maintain
the more readable version of their code while compiling a
performance-optimized version.

4. REENGINEERING AND REFACTORING

Demeyer et al. define reengineering as “the examination
and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form”
[13]. When we talk about reengineering, then, we usually
refer to a legacy software system that has to be altered to
meet changing requirements or to support extensions and
additions.

Legacy code is a critical part of many systems and the
source of many problems. Software systems must constantly
adapt to changes of the environment in which they operate.
In most cases, legacy software has been developed in obsolete
languages by using old-fashioned development practices.
This complicates the upgrade of legacy parts. One option
is to discard or replace legacy parts, but this is not always
feasible because of the cost. In this case, the most viable
solution is to reengineer these parts.

During the reengineering process, we want to improve the
design of the system in order to make it more maintainable
and upgradable. This involves the alteration of its structure,
but at the same the preservation of its behavior. The
main reason that programmers don’t attempt to improve
the design of a system is their fear of breaking its behavior
in the process [14].

When we alter the structure of a system in order to
improve its design without changing its behavior, we are,
by definition, refactoring. A tool that provides automated
refactorings can eliminate the most of the common mistakes
that programmers make when they attempt to manually
refactor a piece of software. (Proper testing is still essential,
however.) This shows the importance of a tool like Photran
when someone is working with legacy code.

5. PHOTRAN

Identification of refactorings for Fortran and high-performance

computing is an essential step, but even more important is
the development of a tool that can automate them. Photran
[11] is an Eclipse-based Fortran IDE being developed at
the University of Illinois that will implement many of these
transformations.

The current version of Photran is based on Eclipse’s C
Development Tool [3] and runs on Eclipse 3.0 under Linux,
Windows, Solaris, and Mac OS X. It includes a keyword-
highlighting Fortran editor, CVS support, debugging via a
GUI interface to GNU gbd, Makefile-based compilation, and
error extraction for several popular Fortran compilers.

A sophisticated refactoring infrastructure is under devel-
opment, although it is not visible in the current public
release. A pretty printer and Rename refactoring have been
demonstrated internally and will be included in the near
future. While we have identified many refactorings that will
be essential for Fortran programmers, there are many we

ings” since the transformations are not made to the working
code.



are not yet aware of. Receiving input from Fortran pro-
grammers, especially those in the high-performance arena,
will be essential.

Our aim is to provide Fortran programmers with a state-
of-the-art tool that can increase productivity and allow them
to adapt their code to changing requirements and modern
software engineering practices. Such a tool will be essential
in reengineering efforts. Since Fortran has been used for
more than fifty years, a vast amount of active Fortran code
is decades old, making a tool like Photran a necessity for
Fortran programmers.

" 'Fortran - gauselim fo0 - Eclipse Platform ) [=] =[]
File Edit Mavigate Project Window Help
r-E a6 |k 68 F |9 | § § 1= .'gl'r?ana_, [Bacvs Reposit..
m”: =B || gauselim 50 2 B8
b R HE v implicit none AN
ey re INTEGER :: indx, jndx,kndx,lIndx ! loop counters m.:u
b I >BestFit-Photran2 11 & INTECER :: naize o )

! # O egu
| A matrix in
B tor i

M a5y REAL :: amtx(10,10
= i Binaries REAL :: bvct(10)
AL wveti)

1
'
. : scl(10) !

b dl>gauselinio0 1.1 INTEGER :: irow(10) !
|

1

1

b %% -gauselim 1.2 (B INTEGER :: ipivot
<Y Makefile 1.2 (Bin; INTEGER :: itemp
| matrixl e 11 (A2 REAL :: tmpval
BEAT : ¢ miwal
| matri2 bt 1.1 (A <€

i matrix3.t 1.1 (A2

(% Problems B2 . Console Properties
L matrixd et 1.1 (A7

I 2 emors, D wamings, 0 infos

L matrixctat 1.1 (A5 re
| Description Resource | In Folder | Lacat

b 13 >Random-Photan2 1,
b 1S e atialin Bhamans ¥ 2 Syntax emor, found END-OF-ST/ gauselim.fd GaussianElimination-Pt line 1
£

' > <E 9 >

G-

anz, 1-linux-i

Figure 1: A Screenshot of Photran 2.1

6. REFERENCES

[1] Boehm, B., and Horowitz E. (editors) The High Cost
of Software: Practical Strategies for Developing Large
Software Systems. Addison-Wesley, 1975.

[2] Brooks, F. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 1995.

[3] C Development Tool http://www.eclipse.org/cdt/

[4] De, V. A Foundation for Refactoring Fortran 90 in
Eclipse. M.S. Thesis, University of Illinois at
Urbana-Champaign, 2004.

[5] Foote, B., Yoder J. Big Ball of Mud. Fourth
Conference on Patterns Languages of Programs
(PLoP’97/EuroPLoP’97). Monticello, Illinois,
September 1997.

[6] Fowler, M. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley, 1999.

[7] Garrido, A., and Johnson, R. “Challenges of
Refactoring C Programs.” Proceedings of IWPSE
2002: International Workshop on Principles of
Software FEvolution. Orlando, Florida. May 19-20,
2002.

[8] Garrido, A., and Johnson, R. “Refactoring C with
Conditional Compilation.” Proceedings of the 18th
IEEFE International Conference on Automated
Software Engineering (ASE 2003). Montreal, Canada,
October 6-10, 2003. 323-326.

[9] Java Developement Tools for Eclipse
http://www.eclipse.org/jdt/

[10] Opdyke, W. Refactoring Object-Oriented Frameworks.
Ph.D. Thesis, University of Illinois at
Urbana-Champaign, 1992.

[11] Photran, an Eclipse plugin for Fortran Developement
http://www.photran.org/

[12] Roberts, D., Brant, J., and Johnson, R. “A
Refactoring Tool for Smalltalk.” Theory and Practice
of Object Systems 3(4), 1997.

[13] Demeyer S., Ducasse S. and Nierstrasz O.
Object-Oriented Reengineering Patterns. Morgan
Kaufmann, 2003.

[14] Feathers M. Working Effectively with Legacy Code.
Prentice Hall, 2004.



