Wrapperstothe Rescue

John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{brant, foote, johnson, droberts} @cs.uiuc.edu

Abstract. Wrappers are mechanisms for introducing new behavior that is
executed before and/or after, and perhaps even in lieu of, an existing method.
This paper examines several ways to implement wrappers in Smalltalk, and
compares their performance. Smalltalk programmers often use Smalltalk’s
lookup failure mechanism to customize method lookup. Our focus is different.
Rather than changing the method lookup process, we modify the method ob-
jects that the lookup process returns. We call these objetted wrappers.
We have used method wrappers to construct several program analysis tools: a
coverage tool, a class collaboration tool, and an interaction diagramming tool.
We also show how we used method wrappers to construct several extensions
to Smalltalk: synchronized ntedds, assertions, and ttimethods. Wrappers
are relatively easy to build in Smalltalk because it was designed with reflec-
tive facilities that allow programmers to intervene in tbekLp process.
Other languages differ in the degree to which they can accommodate change.
Our experience testifies to the value, power, and utility of openness.

1 Introduction

One benefit of building programming languages out of objects is that program-
mers are able to change the way a running program works. Languages like Smalltalk
and CLOS, which represent program elements like Classes and Methods as objects
that can be manipulated at runtime, to allow programmers to change the ways these
objects work when the need arises.

This paper focuses on how to intercept and augment the behavior of existing
methods in order to “wrap” new behavior around them. Several approaches are ex-
amined and contrasted and their relative performances are compared. These are:
Source Code Modifications
Byte Code Modifications
New Selectors
Dispatching Wrappers
Class Wrappers
Instance Wrappers
Method Wrappers

NogkrwbdpE

We then examine several tools and extensions we’ve built using wrappers:
Coverage Tool

Class Collaboration Diagram Tool

Interaction Diagram Tool

Synchronized Methods

Assertions

. Multimethods

Taken one at a time, it might be easy to dismiss these as Smalltalk specific minu-
tiae, or as language specific hacks. However, taken together, they illustrate the
power and importance of the reflective facilities that support them.

Before and after methods as we now know them first appeared in Flavors [30]
and Loops [5]. The Common Lisp Object System (CLOS) [4] provides a powerful
method standard combination facility that includebefore, :after, and
: around methods. In CLOS, a method with bef or e qualifier that specializes a
generic functiong, is executed before any of the primary methodgjoihus, the
before methods are called before the primary method is called, ancatheer
methods are called afterwards. Aar ound method can wrap all of these, and has
the option of completing the rest of the computation. The method combination
mechanism built into CLOS also lets programmers build their own method qualifiers
and combination schemes, and is very powerful.

Unfortunately, misusing method combination can lead to programs that are com-
plex and hard to understand. Application programmers use them to save a little code
but end up with systems that are hard to understand and maintain. Using these fa-
cilities to solve application-level problems is often symptomatic of more serious
design problems that should be addressed through refactoring instead. The result is
that before and after methods have gained a bad reputation.

We use method wrappers mostly asefhective facility, not a hormal application
programming technique. We think of them as a way to impose additional structure
on the underlying reflective facilities. For example, we use them to dynamically
determine who calls a method, and which methods are called. If methods wrappers
are treated as a disciplined form of reflection, then they will be used more carefully
and their complexity will be less of a problem.

Our experience with method wrappers has been with Smalltalk. Smalltalk has
many reflective facilities. Indeed, Smalltalk-76 [17] was the first language to cast
the elements of an object-oriented language itself, such as classes, as first-class ob-
jects. The ability to trap messages that are not understood has been used to imple-
ment encapsulators [26] and proxies in distributed systems [2, 23]. The ability to
manipulate contexts has been used to implement debuggers, back-trackers [21], and
exception handlers [15]. The ability to compile code dynamically is used by the
standard programming environments and makes it easy to define new code man-
agement tools. Smalltalk programmers can change what the system does when it
accesses a global variable [1] and can change the class of an object [16].

However, it is not possible to change every aspect of Smalltalk [10]. Smalltalk is
built upon a virtual machine that defines how objects are laid out, how classes work,
and how messages are handled. The virtual machine can only be changed by the

oukrwnE

Smalltalk vendors, so changes have to be made using the reflective facilities that the
virtual machine provides. Thus, you can’'t change how message lookup works,
though you can specify what happens when it fails. You can’t change how a method
returns, though you can usal ueNowOr OnUnwi ndDo: to trap returns out of a
method. You can’t change how a method is executed, though you can change the
method itself.

We use method wrappers to change how a method is executed. The most com-
mon reason for changing how a method is executed is to do something at every exe-
cution, and method wrappers work well for that purpose.

2 Compiled Methods

Many of the method wrapper implementations discussed in this paper are based
on CompiledMethods, so it is helpful to understand how methods work to under-
stand the different implementations. While this discussion focuses on VisualWorks,
we have also implemented wrappers in VisualAge Smalltalk. They can be imple-
mented in most other dialects of Smalltalk. However, the method names and struc-
ture of the objects are somewhat different. A complete discussion of how to imple-
ment wrappers in these other dialects of Smalltalk is beyond the scope of this paper.

Smalltalk represents the methods of a class using instances of CompiledMethod
or one of its subclasses. A CompiledMethod knows its Smalltalk source, but it also
provides other information about the method, such as the set of messages that it
sends and the bytecodes that define the execution of the method.

Interestingly, CompiledMethods do not know the selector with which they are as-
sociated. Hence, they are oblivious as to which name they are invoked by, as well as
to the names of their arguments. They are similar to Lisp lambda-expressions in this
respect. Indeed, a compiled method can be invoked even if it does not reside in any
MethodDictionary. We will use this fact to construct MethodWrappers.

CompiledMethod has three instance variables and a literal frame that is stored in
its variable part (accessible through #ite andat : put : methods). The instance
variables ardoytes, mclass, andsourceCode. The sourceCode variable holds an in-
dex that is used to retrieve the source code for the method and can be changed so
different sources appear when the method is browsed. Changing this variable does
not affect the execution of the method, though. Trekass instance variable con-
tains the class that compiled the method. One of its uses is to extract the selector for
the method.

The bytes and literal frame are the most important parts of CompiledMethods.
The bytes instance variable contains the byte codes for the method. These byte
codes are stored either as a small integer (if the method is small enough) or a byte
array, and contain references to items in the literal frame. The items in the literal
frame include standard Smalltalk literal objects such as numbers (integers and
floats), strings, arrays, symbols, and blocks (BlockClosures and CompiledBlocks for
copying and full blocks). Symbols are in the literal frame to specify messages being
sent. Classes are in the literal frame whenever a method sends a message to a super-

OrderedCaollection class
methodDic

MethodDictionar
L—#removeFirst

CompiledMethod #[17 68 ...]
—mclass

bytes-

sourceCode----------4----> removeFirst

1 self emptyCheck.

\—>#emptyCheck

Fig. 1.r emoveFi r st method in OrderedCollection

class. The class is placed into the literal frame so that the virtual machine knows
where to begin method lookup. Associations are stored in the literal frame to repre-
sent global, class, and pool variables. Although the compiler will only store these
types of objects in the literal frame, in principle any kind of object can be stored
there.

Figure 1 shows the CompiledMethod for the r emoveFi r st method in Or-
deredCollection. The method is stored under the #removeFirst key in OrderedCol-
lection’s method dictionary. Instead of showing the integer that is in the method’s
sourceCode variable, the dashed line indicates the source code that the integer
points to.

3 Implementing Wrappers

There are many different ways to implement method wrappers in Smalltalk,
ranging from simple source code modification to complex byte code modification.
In the next few sections we discuss seven possible implementations and some of
their properties. Although many of the implementation details that we use are
Smalltalk-specific, other languages provide similar facilities to varying degrees.

3.1 Source code modification

A common way to wrap methods is to modify the method directly. The wrapper
code is directly inserted into the original method’s source and the resulting code is
compiled. This requires parsing the original method to determine where the before
code is placed and all possible locations for the after code. Although the locations of
return statements can be found by parsing, these are not the only locations where the
method can be exited. Other ways to leave a method are by exceptions, non-local
block returns, and process termination.

VisuadWorks alows us to catch every exit from a method with the
val ueNowOr OnUnwi ndDo: method. This method evaluates the receiver block,
and when this block exits, either normally or abnormally, evaluates the argument
block. The new source for the method using val ueNowOr OnUnwi ndDo: is:

ori gi nal Met hodNanme: ar gunent
“before code”
N[“original method source”]
val ueNowOr OnUnwi ndDo:
[“after code”]

To make the method appear unchanged, the source index of the new method can
be set to the source index of the old method. Furthermore, the original method does
not need to be saved since it can be recompiled from the source retrieved by the
source index.

The biggest drawback of this approach is that it must compile each method that it
changes. Moreover, it requires another compile to reinstall the original method. Not
only is compiling slower than the other approaches listed here, it cannot be used in
runtime images since they are not allowed to have the compiler.

3.2 Bytecode maodification

Another way to modify a method is to modify the CompiledMethod directly
without recompiling [24]. This technique inserts the byte codes and literals for the
before code directly into the CompiledMethod so that the method does not need to
be recompiled. This makes installation faster. Unfortunately, this approach does not
handle the after code well. To insert the after code, we must convert the byte codes
for the origina method into byte codes for a block that is executed by the
val ueNowOr OnUnwi ndDo: method. This conversion is non-trivial since the byte
codes used by the method will be different than the byte codes used by the block.
Furthermore, this type of transformation depends on knowledge of the byte code
instructions used by the virtual machine. These codes are not standardized and can
change without warning.

3.3 New selector

Another way to wrap methods is to move the original method to a new selector
and create a new method that executes the before code, sends the new selector, and
then executes the after code. With this approach the new method is:

ori gi nal Met hodNane: ar gunent
“before code”
N[sel f newMet hodName: ar gumnent]
val ueNowOr OnUnwi ndDo:
[“after code”]

This approach was used by Bocker and Herczeg to build their Tracers [3].
This implementation has a couple of desirable properties. One is that the original
methods do not need to be recompiled when they are moved to their new selectors.

Since CompiledMethods contain no direct reference to their selectors, they can be

moved to any selector that has the same number of arguments. The other property is

that the new forwarding methods with the same before and after code can be copied

from another forwarding method that has the same number of arguments. Cloning

these CompiledMethods objects (i.e. using the Prototype pattern [11]) is much faster

than compiling new ones. The main difference between the two forwarding methods

is that they send different selectors for their origina methods. The symbol that is

sent is easily changed by replacing it in the method’s literal frame. The only other
changes between the two methods are the sourceCode and the mclass variables. The
mclass is set to the class that will own the method, and the sourceCode is set to the
original method’s sourceCode so that the source code changes aren’t noticed. Since
byte codes are not modified, neither the original method nor the new forwarding
method needs to be compiled, so the installation is faster than the source code modi-
fication approach.

One problem with this approach is that the new selectors are visible to the user.
Bocker and Herczeg addressed this problem by modifying the browsers. The new
selectors cannot conflict with other selectors in the super or subclasses and should
not conflict with users adding new methods. Furthermore, it is more difficult to
compose two different method wrappers since we must remember which of the se-
lectors represent the original methods and which are the new selectors.

3.4 Dispatching Wrapper

One way to wrap new behavior around existing methods is to screen every mes-
sage that is sent to an object as it is dispatched. In SmalltallgotheNot -
Under st and: mechanism has long been used for this purpose [26, 2, 10, 12, 14]
This approach works well when some action must be taken regardless of which
method is being called, such as coordinating synchronization information. Given
some extra data structures, it can be used to implement wrapping on a per-method
basis. For example, Classtalk [8] us@desNot Under st and: to implement a
CLOS-style before- and after- method combination mechanism.

A common way to do this is to introduce a class with no superclass to intercept
the dispatching mechanism to allow per-instance changes to behavior. However, the
doesNot Under st and: mechanism is slow, and screening every message sent to
an object just to change the behavior of a few methods seems wasteful and inele-
gant. The following sections examine how Smalltalk’'s meta-architecture lets us
more precisely target the facilities we need.

3.5 ClassWrapper

The standard approach for specializing behavior in object-oriented programming
is subclassing. We can use subclassing to specialize methods to add before and after
code. In this case, the specialized subclass essentially wraps the original class by
creating a new method that executes the before code, calls the original method using

super mechanism, and then executes the after code. Like the methods in the new
selector approach, the methods for the specialized subclass can also be copied, so
the compiler is not needed.

Once the subclass has been created, it can be installed into the system. To install
the subclass, the new class has to be inserted into the hierarchy so that subclasses
will also use the wrapped methods. It can be inserted by using the super cl ass:
method to change the superclass of al of the subclasses of the class being wrapped
to be the wrapper. Next, the reference to the original class in the system dictionary
must be replaced with a reference to the subclass. Finally, al existing instances of
the original class have to be converted to use the new subclass. This can be accom-
plished by getting al | I nstances of the original class and using the
changed assToThat O : method to change their class to the new subclass.

Like the new selector approach this only requires one additional message send.
However, these sorts of wrappers take longer to install. Each class requires a scan of
object memory to look for all instances of the original class. Once the instances
have been found, we have to iterate though them changing each of their classes.

3.6 Instance Wrapper

The class wrapper approach can also be used to wrap methods on a per instance
basis, or afew at atime. Instead of replacing the class in the system dictionary, we
can change only the objects that we want to wrap, by using the changed assTo-
That O : method on only those objects.

Instance wrappers can be used to change the way individual objects behave. This
is the intent of the Decorator pattern [11]. However since these decorations are im-
mediately visible though existing references to the original object, objects can be
decorated dynamically.

3.7 Method Wrapper

A method wrapper is like a new selector in that the old method is replaced by a
new one that invokes the old. However, a method wrapper does not add new entries
to the method dictionary. Instead of invoking the old method by sending a message
to the receiver, a method wrapper evaluates the original method directly. A method
wrapper must know the original method, and must be able to execute it with the
current arguments. Executing a CompiledMethod is easy, since a CompiledMethod
responds to the val ueW t hRecei ver: ar gunent s: message by executing it-
self with the given areceiver and an array of arguments.

One way for a MethodWrapper to keep track of its origina method is for
MethodWrapper to be a subclass of CompiledMethod with one new instance vari-
able, clientMethod, that stores the original method. MethodWrapper also defines
bef or eMet hod, after Met hod, and recei ver: argunments: methods as
well as a few helper methods. The bef or eMet hod and af t er Met hod methods

OrderedCallection class
methodDict

MethodDictionary

——
/—#removeFrSt
118567696

MethodWrapper /
Cmclass A CompiledMethod #1768 ..]
bytes mclass
clientMethod bytes-
sourceCode ----------- —— sourceCode----------- ----> removeFirst
Zi e 1. self emptyCheck.

2 \\—) A
. |
\)) NY #emptyCheck /
#receiver:

Fig. 2. MethodWrapper onr enoveFi r st method

contain the before and after code. The val ueW t hRecei ver: ar gunent s:
method executes the original method given the receiver and argument array.
val ueWt hRecei ver: anCbj ect argunents: args
sel f bef oreMet hod.
Al cli ent Met hod
val ueWt hRecei ver: anCbj ect
argunents: args]
val ueNowOQr OnUnwi ndDo:
[sel f afterMet hod]

The only remaining problem is how to send the val ueW t hRecei ver: -
ar gunent s: message to a MethodWrapper. The method must be able to refer to
itself when it is executing, but Smalltalk does not provide a standard way to refer to
the currently executing method. When a CompiledMethod is executing, the receiver
of the message, and not the CompiledMethod, is the “self” of the current computa-
tion. In VisualWorks Smalltalk, the codé Hi sCont ext net hod” evaluates to
the currently executing method, but it is inefficient. We need some kind of “static”
variable that we could initialize with the method, but Smalltalk does not have that
feature. Instead, we make use of the fact that each Smalltalk method keeps track of
the literals (i.e. constants) that it uses. Each MethodWrapper is compiled with a
marked literal (we use #(), which is an array of size 0). After it has been created, the
system replaces the reference to the literal with a reference to the MethodWrapper.
Using this trick the ecei ver : val ue: message can be sent to the MethodWrap-
per by compiling

ori gi nal Met hodNane: argunent
"t() receiver: self value: argunent

and replacing the empty array (in the first position of the literal frame) with the
method. Ther ecei ver: val ue: method is one of the MethodWrapper's helper
methods. It is responsible for converting its value argument into an array and send-
ing them to theval ueW t hRecei ver : ar gunent s: method.

Table 1. Overhead per 1,000 method calls (ms)
Number of arguments

Approach 0 1 2 3

Method modification (no returns) 5.2 5.2 9.2 9.7

Method modification (returns) 339.0 | 3438 | 3445 | 3465

New selector 55 97| 103 | 107
Dispatching wrapper 211 | 228| 235 275
Class wrapper 59 98| 105| 109
Method wrapper 234 | 287| 315| 318
Inlined method wrapper 188 | 203 | 21.9| 245

Figure 2 shows a MethodWrapper wrapping the r enoveFi r st method of Or-
deredCollection. The CompiledMethod has been replaced by the MethodWrapper in
the method dictionary. The MethodWrapper references the original method through
its clientMethod variable. Also, the empty array that was initially compiled into the
method has been replaced with a reference to the wrapper.

Like the new selector approach, MethodWrappers do not need to be compiled for
each method. Instead they just need a prototype (with the same number of argu-
ments) that can be copied. Once copied, the method sets its method literal, source
index, mclass, and clientMethod. Since the method wrapper can directly execute the
original method, no new entries are needed in the method dictionary for the original
method.

Smalltalk’s CompiledMethod objects and byte code were designed primarily to
make Smalltalk portable. As with doesNot Under st and: , Smalltalk’s historic
openness continues to pay unexpected dividends.

Table 1 and Table 2 compare the different approaches for both runtime overhead
and ingtallation time. These tests were performed on an 486/66 with 16MB memory
running Windows 95 and VisualWorks 2.0. The byte code modification approach
was not implemented, thus it is not shown. The dispatching wrapper has been omit-
ted from the installation times since it is only an instance based technique. Added to
the listings is an inlined method wrapper. This new method wrapper inlines the be-
fore and after code into the wrapper without defining the additional methods. This
saves four message sends over the default method wrapper. Although it helps run-
time efficiency, it hurts installation times since the inlined wrappers are larger.

Table 1 shows the overhead of each approach. The method modification approach
has the lowest overhead if the method does not contain a return, but when it contains
areturn, the overhead for method modification jumps to more than ten times greater
than the other techniques. Whenever a return occurs in a block, a context object is

Table 2. Installation times for 3,159 methods in 226 classes (sec)

Approach Time
Method modification 262.6
New selector 255
Class wrapper 44.2
Method wrapper 17.0
Inlined method wrapper 19.9

created at runtime. Normally these context objects are not created so execution is
much faster. The new selector and class wrapper approaches have the best overall
times. The two method wrapper approaches and the dispatching wrapper approaches
have more than double the overhead as the new selector or class wrapper approaches
since the method wrappers and dispatching wrappers must create arrays of their ar-
guments.

Table 2 contains the installation times for installing the various approaches on all
subclasses of Model and its metaclass (226 classes with 3,159 methods). The
method wrapper techniques are the fastest since they only need to change one entry
in the method dictionary. The new selector approach is dightly dower since it needs
to change two entries in the method dictionary. Although the class wrapper only
needs to add one entry, it must scan object memory for instances of each class to
convert them to use the new subclass wrapper. Finally, the method modification
approach isthe dowest since it must compile every method.

Because wrappers are relatively fast, and because the overhead associated with
them is predictable, they may be more suitable in time-critical applications than
classical Smalltalk approaches based on doesNot Under st and: .

4 Applications

Method wrappers can be used in many different areas. In this section we outline
six different uses.

4.1 Coverage Tool (Image Stripper)

One application that can use method wrappers is an image stripper. Strippers re-
move unused objects (usually methods and classes) from the image to make it more
memory efficient. The default stripper shipped with VisualWorks only removes the
development environment (compilers, browsers, etc.) from the image.

A different approach to stripping is to see what methods are used while the pro-
gram is running and remove the unused ones. Finding the used methods is a cover-
age problem and can be handled by method wrappers. Instead of counting how
many times a method is called, the method wrapper only needs aflag to signify if its
method has been called. Once the method has been called, the original method can
be restored so that future calls occur at normal speeds.
We created a subclass of MethodWrapper that adds two new instance variables,
selector and called. The selector variable contains the method’s selector, aaltied
is a flag that signifies if the method has been called. Since the method wrapper does
not need to do anything after the method is executed, it only needs to redefine the
bef or eMet hod method:
bef or eMet hod
cal l ed ifFal se:
[called := true.
ntl ass addSel ector: sel ector
wi t hMet hod: cl i ent Met hod]

This method first sets its flag and then reinstalls its original method. The
i f Fal se: test avoids infinite recursion in case that the method is called while per-
forming theaddSel ect or: wi t hMet hod: operation. Execution of the applica-
tion program is slow at first, but it rapidly increases once the base set of methods is
reinstalled.

The method wrapper correctly reports whether it has been called. However, this
stripping scheme requires 100% method coverage. Any method that is not used by
the test suite will be removed, so if a test suite does not provide 100% method cov-
erage (which they rarely do) then the stripper will remove a method that is needed
later. Removing methods in this manner can introduce errors into an otherwise cor-
rect program. Therefore, all methods should be saved to a file before they are re-
moved. If one of the removed methods is called, it must be loaded, installed, and
executed. The best way to detect that a deleted method has been called is with the
doesNot Under st and: mechanism, though it is also possible to use method
wrappers for this purpose.

4.2 Class Collaboration

Method wrappers can also be used to dynamically analyze collaborating objects.
For example, we might create call graphs that can help developers better understand
how the software works. Furthermore, such information can help the developer
visualize the coupling between objects. This can help the developer more quickly
analyze when inappropriate objects are interacting.

Method wrappers can capture this information by getting the current context, just
like the debugger does. Whenever a method is called, its wrapper needs to record
who called the method, where the call occurred (which method and statement inside
the method), the starting and ending times for the method, and finally how the
method terminated (either normally with a return, or abnormally by a signal). Meth-

T Collaboration Graph M= E3

BrowserErviranment]

‘SystemNavgatUr
RefactaringBrowser]

o

‘\

StateLockPolicy

BirowrserTextTool

ErqwserClassTool-1assMavigatorTool

‘ Classes. .. I | iPause I | Sort I | Merge I

Fig. 3. Class collaboration graph of the Refactoring Browser
ods that return abnormally might be a problem since the programmers might not
have programmed for such a case.

Using the information collected by the method wrappers, we can create a class
collaboration graph such as the one shown in Figure 3. Whenever one object of a
class sends a message to another object in another class, a line is drawn between
them. Classes whose objects collaborate a lot are attracted to each other. The col-
laboration graph can help the programmer see which objects are collaborating as
well as how much they are collaborating.

4.3 Interaction Diagrams

Interaction diagrams illustrate the dynamic sequence of the message traffic
among several objects at runtime. The interaction diagram application allows users
to select the set of methods that will be watched. These methods are wrapped, and
the tool records traffic through them. When the wrappers are removed, the interac-
tions among the objects that sent and received these messages are depicted, as in
Figure 4.

The diagrams generated by the tool are similar to the interaction diagrams seen in
many books, with one notable exception. Since we only select a few methods to
observe, we miss some messages. As a result, there are times when a message is
received, but the last method entered did not send the message. For example, sup-
pose you have:

E Interaction Diagram Mi=] E3
|Hethuds...| | Install I | EUninstaIIEI Scale: |
a a Sy=stemHNavigator (nothing selected) .2
RefactoringBrows
requestForing
izLocked -
izLocke
naoticeCiAIndo
closed _
update: with: fra .
release
relesse _
release
*
[+

Fig. 4. Interaction Diagram on the Refactoring Browser

Foo>>cr eat eBar
ABar new

Bar>>initialize)
"do some initialization"

Bar class>>new
Asuper new initialize

and that you only wrap Foo>>cr eat eBar and Bar>>i niti al i ze. If you send
a Foo the cr eat eBar message, that event will be recorded. It will send the new
message to Bar class, but since that method is not wrapped, it is not observed.
When the new method sendsthei ni ti al i ze method to aBar , it is observed, but
the last observed method did not send it. Such events are called indirect message
sends and are displayed as yellow lines. In the figure, we can see that "a Refactor-
ingBrowser" sent a cl osed message to some object that wasn't wrapped, which
resulted in the updat e: wi t h: f r om method being called on "(nothing selected)”
(aCodeModel).

Without a facility for wrapping the watched methods, tools would have to inter-
vene at the source or binary code levels. For instance Lange and Nakamura [22]
modify source code to instrument programs for tracing. The relative absence of such
tools in languages without support for wrappers testifies to the difficulty of inter-
vening at these levels.

Both Probe from Arbor Intelligent Systems and the Object Visualizer in IBM’s
VisualAge for Smalltalk generate interaction diagrams using method wrappers.
Probe uses method wrappers that are very similar to those described in this paper
except that the before and after code is been inlined into the wrapper.

The Object Visualizer uses a combination of lightweight classes and method
wrappers to capture the runtime interaction information. However, their method
wrappers do not directly reference the wrapped method. Instead they look up the
method for every send. Instance wrappers would have been a better choice given
this approach.

4.4 Synchronized Methods

Method wrappers are also useful for synchronizing methods. In a multithreaded
environment, objects used concurrently by two different threads can become cor-
rupt. A classic example in Smalltalk is the Transcript. The Transcript is a global
variable that programs use to print output on. It is most often used to print debug-
ging information. If two processes write to the Transcript at the same time, it can
become corrupt and cause exceptions to be raised. To solve this problem we need to
ensure that only one process accesses the Transcript at a time.

One solution would be to define a language construct for synchronization. For
example, Java takes this approach by defining a method tag that is used to specify
that a method is synchronized [13]. The system ensures that only one method that is
tagged with thesynchr oni zed keyword is running at any time for an instance
and only one static method that is tagged is running at any time for a single class.

The Smalltalk compiler does not need to directly support synchronized methods
since Smalltalk exposes enough of its implementation to allow us to implement
these features. For example, we can implement static synchronized methods by us-
ing method wrappers where each wrapper acquires its lock before executing the
original method and releases it after the method executes. Similarly, the non-static
synchronized methods can be implemented by using class wrappers where each in-
stance would have its own class wrapper that would wrap gapker message
send with the lock. Method and class wrappers let us add this functionality in dy-
namically, whereas Java forces us to recompile to change the method’s attribute.

45 Pre- and Post-conditions

Pre- and post-conditions help programmers produce quality software by describ-
ing a component and helping detect when it is being misused. The earlier an error is
detected, the easier it is to fix. Eiffel supports pre- and post-conditions directly with

the require and ensure keywords [25]. When conditions are enabled, invocations of
the method are required to meet its conditions before executing and the method en-
sures its conditions after executing.

In systems like Smalltalk that do not directly support pre- and post-conditions,
programmers sometimes write the checks directly into the code. For example, the
renmoveFi r st method in OrderedCollection checks that it is non-empty. Other
times these conditions are written as commentsin code, or not written down at all.

While it is useful to have these checks in the code when devel oping the software,
they are not as useful after releasing the software. To the user, an unhandled empty
collection signal raised by the empty check in r emoveFi r st is the same as an
unhandled index out of bounds signal that would be raised if the error check was
eliminated. Both cause the product to fail. Therefore, to be useful to developer, a
system that implements pre- and post-conditions should be able to add and remove
them quickly and easily.

Pre- and post-conditions can be implemented by using method wrappers. For each
method, a method wrapper would be created that would test the pre-condition,
evaluate the wrapped method, and finally test the post-condition on exit.

Post-conditions can also have old values. Old values are useful in comparing val-
ues that occur before executing a method to the values after execution. To support
old values, we added a specia selector, OLD, that when sent to an expression will
refer to the value of the expression before the execution of the method. Although
this selector appears to be a message send, a preprocessing step replaces it with a
temporary. The receiver of the message is then assigned to the temporary before the
method is executed.

As an example, consider the r emoveFi r st method of OrderedCollection. It
might have a pre-condition such asetf size > 0" and a post-condition of
“self size OLD - 1 == self size”(i.e., the size of the collection after
execution is one less than the size before). The method wrapper for this example

would be:
| oldl |
oldl := self size.
[self size > 0] value ifFalse:
[sel f preconditionErrorSignal raise].
N* code to eval uate wapped met hod’]
valueNowOrOnUnwindDo:

[old1l - == self size]value
ifFalse: [self
postconditionErrorSignal
raise]]

Notice that the sel f si ze COLD’ from the post-condition has been replaced
by a temporary and that the receivexel'f si ze”, is assigned at the beginning of
the wrapper.

Others have implemented pre- and post-conditions for Smalltalk [7, 27], but they
modified the compiler to generate the conditions directly into the methods. Thus
they require a complete recompile when (un)installing the conditions. [7] allowed
conditions to be turned on and off, but they could only be completely eliminated by
a complete recompile.

ﬁﬂmwser - Smalltalk M=l E
Buffers Category Class Protocol Selector Tool
Magnitude-General | #]|Interval *||accessing Ll rermove:ifAbsent. |
Magnitude-Mumberd_J|LinkedList copying | rermovedI SuchThat|_
Collections-Abstrag addin rermoveAtindex:
Collections-Unarde SortedCollection m rermoveFirst
e e * | SortedCollectionyyi{#]| enumerating rernoveFirst:
|@ categon hierarcﬂ|@ instance{_ class | user interface * remuovel ast *
self size =0 fad
*
removeFirst il
[firstOhbject | =
firstObjact ;= =elf basicAt: firstindex,
self basicAt: firstindex put: nil.
firstindex = firstindex + 1.
irstObject
*
self size OLD - 1 == self size lad
+

Fig. 5. Browser with pre and postconditions

Figure 5 shows a browser with pre- and post-conditions inspecting the
renoveFi r st method. The three text panes at the bottom display the method’s
pre-condition, the source, and the post-condition. Both the pre-condition and the
post-condition panes can be eliminated if the programmer does not wish to view
them. Since the pre- and post-conditions are separated from the method, we don't
need to augment the method definition with special keywords or special message
sends as Eiffel and the other two Smalltalk implementations do.

4.6 Multimethods

The Common Lisp Object System and the CLOS Metaobject Protocol [18] pro-
vide elaborate facilities for method wrapping. The CLOS method combination
mechanism provides programmers with a great deal of control over how different
kinds of methods interact with the inheritance hierarchy to determine how and when
methods are executed. The CLOS standard method combination mechanism exe-
cutes the ar ound and: bef or e methods in outermost to innermost order. Next,
the primary methods are executed, followed by:thét er methods in innermost
to outermost order. Finally, thear ound methods are resumed.

Our basic wrappers are much simpler. They execute the before code and primary
code for each wrapper, before calling the wrapped method. If that method is
wrapped, its before code and primary code is executed. Like CL&®und
methods, our wrappers may decide to not call their wrapped methods.

We have used method wrappers to construct mechanisms like those found in
CLOS. Next, we will describe how to use them to build CLOS-style generic func-
tions, method combination, and multimethods.

Multimethods [4] are methods that are dispatched at runtime by taking the identi-
ties of all the methods arguments into account, rather than just that of the message
receiver, as is the case in languages like Smalltalk, Java, and C++. Java and C++
use static overloading to distinguish methods based on the compile-time types of the
arguments. Multimethods are more powerful because they choose a method at run-
time.

In CLOS, all the multimethods that share the same function name (selector) are
members of a generic function by that name. When this function is called, it deter-
mines which (if any) of its multimethods apply, and calls them in the appropriate
order.

The way that multimethods are called is determined by a method combination
object. Multimethods are not only specialized by the types of their arguments, they
may also be qualified. For instance, the standard method combination object con-
ducts the execution of : around, : before, : after, and pri mary methods by
taking these qualifiersinto account. The CLOS Metaobject Protocol [18, 19] permits
optimizations of this process by a sort of partia evaluation, using discriminating
functions and effective methods.

Our Smalltalk multimethod implementation uses a dormant type syntax that is
built into the VisuaWorks Smalltalk compiler as its syntax for specializing mul-
timethod arguments. This syntax lets us specify both ClassSpecializers, and Equal-
Specializersfor literal instances.

When the Smalltalk browser accepts a method with these speciaizations, it cre-
ates a MultiMethod object. MultiMethods are subclasses of CompiledMethod that
are given selectors distinct from those of normal methods. MultiMethods also make
sure there is an instance of GenericFunction for the selector for which they are being
defined. GenericFunctions also keep track of one or more DiscriminatingMethods.

DiscriminatingM ethods are subclasses of MethodWrapper that intercept calls that
occupy the MethodDictionary dots where a normal method for their selector would
go. When a DiscriminatingMethod gains control, it passes its receiver and argu-
ments to its GenericFunction, which can then determine which MultiMethods to
execute in what order. It does so by passing control to its MethodCombination ob-
ject.

Subclasses of our MethodCombinations, besides implementing the standard be-

fore/after/primary —style combinations, can be constructed to collect the values of
their primary methods, as in CLOS, or to call methods in innermost to outermost

order, as in Beta [20].

Since a DiscriminatingMethod is called after a dispatch on its first argument has

already been done, it can use that information to optimize its task.

To illustrate our syntax, as well as the power of multimethods, consider the im-
pact of multimethods on the Visitor pattern [11]. First, consider a typical Smalltalk

implementation of Visitor:

Par seNode>>accept Vi stor: aVisitor
Nsel f subcl assResponsibility

Vari abl eNode>>accept Vi stor: aVisitor
MaVisitor visitWthVari abl eNode: self

Const ant Node>>accept Vi stor: aVisitor
MaVi sitor visitWthConstant Node: self

Opti m zi ngVi si t or >>vi si t Wt hConst ant Node: aNode
NaNode val ue optim zed

Opti m zi ngVi sitor>>vi si t Wt hVari abl eNode: aNode
NaNode | ookupl n: self synbol Tabl e

However, when MultiMethods are available, the double-dispatching methods in
the ParseNodes disappear, since the type information does not need to be hand-
encoded in the selectors of the calls to the Visitor objects. Instead, the Visitor cor-
rectly dispatches calls on the vi si t Wt hNode: GenericFunction to the correct
MultiMethod. Thus, adding a Visitor no longer requires changing the ParseNode
classes.

Opti m zi ngVi si tor>>visit Wt hNode: aNode <ParseNode>
Nsel f val ue optim zed

Qptim zi ngVi si tor>>
vi sit Wt hNode: aNode <Vari abl eNode>
NaNode | ookupln: self synbol Tabl e

The savings on the Visitor side may appear to be merely cosmetic. The
vi sit Wt hXxxNode: methods are replaced by corresponding vi sit Wt h-
Node: aNode <XxxNode> methods, which are specialized according to the sort
of node they service. Even here, though, savings are possible when a particular
node’s implementation can be shared with that of its superclass. For instance, if
many of OptimizingVisitor's multimethods would have sent the optimized
message to their node’s value, they can share the implementation of this method
defined forOpti m zi ngVi si t or and Par seNode. The hand coded double-
dispatched implementations usually provide a stub implementation of the subclass
Node’s version of the method so as to avoid a breach of encapsulation.

5 Other Approaches

Many systems provide ways for programs to augment or preempt the behavior of
existing functions. If the language does not permit such modifications, programmers
will often resort to low-level, implementation specific schemes to achieve their
ends.

Wrapping strategies are not limited to languages. For instance, al the routines in
the Macintosh Toolbox can be wrapped. The architects of the Toolbox designed it so
that calls to the ROM-based built-in Toolbox functions were accessed indirectly
through a table in RAM. This indirection allowed Apple to ship patched copies of

Toolbox entries to correct or supplement the existing routines. It also gave third-
party software designers the opportunity to change the routines from which the sys-
tem was built.

Over the years, Macintosh programmers have shown remarkable ingenuity in the
ways that they’'ve exploited these hooks into the system. For instance, applications
like wide desktops and screen savers were built by wrapping the Toolbox. This
shows the wisdom of designing systems with flexible foundations.

Programmers using Microsoft Windows have achieved similar results with the
dynamic linking mechanism used to implement Dynamic Link Libraries (DLLS). A
function can be wrapped by providing a wrapping implementation for it in a DLL
that is referenced before the wrapped DLL.

C++ has no standard mechanisms for allowing programmers to intercept calls to
C++ functions, virtual or otherwise. However, some programmers have exploited
the most common implementation mechanism for dispatching C++ virtual functions,
the “v-table” [9] to gain such access [29]. By falling back on unsafe C code, and
treating v-table entries as simple C function pointers, programmers can dynamically
alter the contents of the v-table entry for a class of objects. By substituting another
function with the same signature for a given v-table entry, that entry can be wrapped
with code that can add before and after actions before calling (or not calling) the
original method.

Since the v-table mechanisms are not a part of the C++ standard, and since more
complex features of C++ such as multiple inheritance and virtual bases often em-
ploy more elaborate implementations, programmers cannot write portable code that
depends on “v-table surgery”. Interestingly, C with Classes contained a mechanism
[28] that allowed programmers to specify a function that would be called before
every call to every member functions (except constructors) and another that would
be called before every return from every member function. Thaké andr e-

t ur n functions resemble dispatching wrappers.

In contrast to C++, the Microsoft Component Object Model (COM) [6] defines an
explicit binary format that is similar to, and based upon, the customary implementa-
tion of simple C++ v-tables. Since any COM object must adhere to this format, it
provides a potential basis for wrapping methods using v-table manipulation, since
the rules by which v-tables must play are explicitly stated.

6 On thelmportance of Being Open

Smalltalk’s reflective facilities, together with our wrappers, allowed us to con-
struct powerful program analysis tools and language extensions with relative ease.
The ease with which we can add and remove wrappers at runtime makes tools like
our interaction diagramming tool possible. In contrast, adding a feature like dy-
namic coverage analysis to an existing program is impossible for users of traditional
systems, and difficult for the tool vendors.

While wrappers can, in principle, be used to solve problems at both the domain-
level, or at the meta-, or language-level, the analysis tools and language extensions

we present here are all reflective applications, in that they exploit our ability to ma-
nipulate program objects as pieces of the program itself, rather than as representa-
tions of application-level concerns.

In the case of tools, the fact that the program is built out of objects lets us inspect
and alter these objects on-the-fly. Tools need an inside view of the program. For
instance, when we wrap a CompiledMethod object using our interaction tool, we are
exploiting its language level role as a program element and are indifferent to do-
main-specific behavior it engenders.

In the case of our linguistic extensions, the openness of the language’s objects
permitted us to construct these extensions, which were then used to write domain
specific code. The use of raw reflective facilities to construct such extensions is a
good way to harness the power of reflection.

None of the examples of method wrappers in this paper are domain specific. Do-
main specific uses of reflective facilities like before- and after- methods are fre-
quently symptoms of problems with the application’s structure that would be better
addressed by refactoring its design. Reflective facilities are useful alternatives when
a system becomes so overgrown that it can’t be redesigned. Being able to change the
language level gives programmers a big lever and can buy time until the resources
to overhaul the system become available. However, metalevel tricks are no substi-
tute for properly addressing a system'’s serious long-term structural problems.

A generation of Smalltalk programmers has turned to Smalltalk’s lookup failure
exceptiondoesNot Under st and: , when the time came to extend the language.
This paper has examined the strengths and weaknesses of several ways of interven-
ing during the lookup process. Approaches basedio@s Not Under st and: have
a brute force quality about them, since they must screen every message sent. Method
wrappers let us intervene more precisely and selectively. When we needed a way to
build power, efficient programming tools and language extensions, wrappers came
to the rescue.

The original Smalltalk designers did a wonderful job of building a language out
of objects that users can change. We rarely run into the “keep out” signs that so of-
ten frustrate users of other languages. This lets us add new tools to the pro-
gramming environment, keep up with the latest database and network technology,
and maintain and enhance our own systems as they evolve.

Acknowledgments

lan Chai, Dragos Manolescu, Joe Yoder, and Yahya Mirza provided valuable
comments and insights on an earlier version of this paper. James Noble suggested a
useful simplification in our Visitor pattern example. The QP '98 program
committee reviewers also suggested a number of valuable improvements.

The interaction diagramming tool was originally a project done by David
Wheeler, Jeff Will, and Jinghu Xu for Ralph Johnson's CS497 class. Their report on
this project can be found at:

http://radon.ece.uiuc.edu/~dwheeler/interaction.html.

References

The code referenced in this article can be found at:

10.

11.

12.

13.

14.

15.

16.

http://st-www.cs.ui uc.edu/~brant/Applications/MethodWrappers.html

Kent Beck. Using demand loading. The Smalltalk Report, 4(4):19-23, January

1995.

John K. Bennett. The design and implementation of distributed Smalltalk. In
Proceedings OOPSLA ’'87pages 318-330, December 1987. Published as
ACM SIGPLAN Notices, volume 22, number 12.

Heinz-Dieter Bocker and Jirgen HerczeyVhat Tracers are Made Of,
ECOOP/OOPSLA 90 Conference Reedings, SIGPLAN Notices, Volume
25, Number 10, October 1990

Dan G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, and David A. Moon. Common lisp object system specifica-
tion. SGPLAN Notices, 23, September 1988.

Daniel G. Bobrow and Mark Stefifhe LOOPS Manual. Xerox PARC, 1983.
Kraig Brockschmidtinside OLE, second edition, Microsoft Press, Redmond,
Washington, 1995.

Manuela Carrillo-Castellon, Jesus Garcia-Molina, and Ernesto Pimentel. Eif-
fel-like assertions and private methods in SmalltalkT@OLS 13, pages 467-
478, 1994.

Pierre Cointe,The Classtalk System: a Laboratory to Sudy Reflection in
Smalltalk, OOPSLA/ECOOP '90 Workshop on Rexftion and Metalevel Ar-
chitectures in Object-Oriented Programming, Mamdouh Ibrahim, organizer.
Margaret A. Ellis and Bjarne Stroustrufhe Annotated C++ Reference Man-

ual. Addison-Wesley, Reading, Massachusetts, 1990.

Brian Foote and Ralph E. Johnson. Reflective facilities in Smalltalk-80. In
Proceeding®OOPSLA 89 pages 327-336, October 1989. Published as ACM
SIGPLAN Notices, volume 24, number 10.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Softwadeison-Wesley,
1995.

B. Garbinato, R. Guerraoui, and K. Mazoui. Implementation of the GARF
Replicated Objects Platform. In Distributed Systems Engineering Journ@),

1995, 14-27.

James Gosling, Bill Joy, and Guy Stedlee Java™ Language Specificatjon
Addison-Wesley, 1996.

R. Guerraoui, B. Garbinato, and K. Mazouni. The GARF System. In IEEE
Concurrency5(4), 1997.

Bob Hinkle and Ralph E. Johnson. Taking exception to Smalltalk. The Small-

talk Report 2(3), November 1992.

Bob Hinkle, Vicki Jones, and Ralph E. Johnson. Debugging objects. The
Smalltalk Report2(9), July 1993.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Daniel H. H. Ingalls, The Evolution of the Smalltalk-80 Virtual Machine, in
Smalltalk-80, Bits of History, Words of Advice, Glenn Krasner, editor, Ad-
dison-Wedey, Reading, MA, 1983

Gregor Kiczales, Jm des Rivieres, and Daniel G. Bobrow, The Art of the
Metaobject Protocol, MIT Press, 1991.

Gregor Kiczales and John Lamping, Issues in the Design and Implementation
of Class Libraries, OOPSLA '92, Vancouver, BC, SIGPLAN Moes Volume
27, Number 10, October 1992.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and
Kristen NygaardObject-Oriented Programming in the Beta Language, 8 Oc-
tober, 1990.

Wilf R. LaLonde and Mark Van Gulik. Building a backtracking facility in
Smalltalk without kernel support. IRroceedings OOPSLA '8&ages 105-
122, November 1988. Published as ACM SIGPLAN Notices, volume 23,
number 11.

Danny B. Lange and Yuichi Nakamura, Interactive Visualization of Design
Patterns Can Help in Framework Understanding, In Proceedings of OOPSLA
'95, pages 342-357, October 1995, Published as ACM SIGPLAN Notices,
volume 30, number 10

Paul L. McCullough. Transparent forwarding: First steps. In Proceedings
OOPSLA '87 pages 331-341, December 1987. Published as ACM SIGNPLAN
Notices, volume 22, number 12.

Steven L. Messick and Kent L. Beck. Active variables in Smalltalk-80. Tech-
nical Report CR-85-09, Computer Research Lab, Tektronix, Inc., 1985.
Bertrand Meyer. Eiffel: The LanguagePrentice-Hall, 1992.

Geoffrey A. Pascoe. Encapsulators. A new software paradigm in Smalltalk-80.
In Proceedings OOPSLA '86ages 341-346, November 1986. Published as
ACM SIGPLAN Notices, volume21, number 11.

Fred Rivard. Smalltalk: areflective language. In ProceedingdReflection '96
Bjarne Stroustrop. The Design and Evolution of C++Addison-Wedey,
Reading, MA 1994.

Michael D. Tiemann. Solving the RPC problem in GNU C++. In 1988
USENIX C++ Conference, pages 17-21, 1988.

D. Weinreb, and D. Moon. Lisp Machine Manual, Symbolics, 1981.

